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Quantum Kramers equation for energy diffusion and barrier crossing dynamics
in the low-friction regime
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Based on a true phase space probability distribution function and an ensemble averaging procedure we have
recently developed@Phys. Rev. E65, 021109~2002!# a non-Markovian quantum Kramers equation to derive
the quantum rate coefficient for barrier crossing due to thermal activation and tunneling in the intermediate to
strong friction regime. We complement and extend this approach to weak friction regime to derive quantum
Kramers equation in energy space and the rate of decay from a metastable well. The theory is valid for arbitrary
temperature and noise correlation. We show that depending on the nature of the potential there may be a net
reduction of the total quantum rate below its corresponding classical value, which is in conformity with earlier
observation. The method is independent of path integral approaches and takes care of quantum effects to all
orders.
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I. INTRODUCTION

The dynamics of noise-induced rate processes was
successfully treated in a seminal paper by Kramers in 1
@1#. With the advances in experimental methods for monit
ing ultrafast processes on microscopic spatial and temp
scales over the last two decades@2,3#, this has been the sub
ject of numerous investigation from classical, semiclassi
and quantum mechanical point of view@4–7#. The classical
Kramers theory has thus been extended to non-Marko
dissipation models@8–10#, generalization to complex poten
tial @11–13# and to many degrees of freedom@14,15#, fluc-
tuating barrier problem@16# and nonstationary activated pro
cesses@17#, thermal ratchet@18,19# and molecular motors
@20#, analysis of quantum@4,5,21–23# and semiclassical ef
fects @24#, calculation of time-dependent transmission co
ficient @25,26#, fractional kinetics@27,28#, nonequilibrium
open systems@29,30#, activationless escape of a free Brow
ian particle@31#, and other related issues@4,6,7#.

Although classical Kramers equation was proposed m
than sixty years ago and quantum Kramers problem of
cape from a metastable state has attracted wide attention
the last two decades@4#, the quantum version of Kramer
equation was not reported in the literature. This is proba
because of the fact that the traditional method of treatmen
quantum Kramers problem rests on calculation of partit
function for a system-reservoir Hamiltonian in terms of pa
integrals, rather than on evolution of probability distributio
function as used in classical theory of stochastic proces
Very recently we have developed@32# a method based on
true quantum (c number! phase space distribution functio
~rather than quasiprobability function, like Wigner functio
@33#! to derive for the first time an exact non-Markovia
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quantum Kramers equation which is valid for arbitrary te
perature and friction. The solution of this equation as
appropriate boundary value problem results in an expres
for quantum rate coefficient which not only reduces
Kramers-Grote-Hynes@1,8# rate in the classical limit but also
to the result corresponding to zero-temperature tunneling
the full quantum limit, treated by Caldeira and Leggett@34#
in early 1980s. The rate coefficient thus derived pertains
spatially diffusion limited processes and is therefore valid
intermediate to strong friction regime. We undertake t
present study with the following specific objectives
complement this work in the low friction regime where th
process is controlled by energy diffusion.

~1! To extend the treatment of quantum Kramers probl
for low to low-moderate friction we develop a quantu
Kramers equation for energy diffusion which is a quantu
version of classical non-Markovian equation of Carmeli a
Nitzan ~CN! @10# proposed in early 1980s.

~2! Our aim here is the inclusion of memory effects f
arbitrary noise correlation of the heat bath kept at an a
trary temperature taking into consideration the quantum
fects ~corrections! to all orders.

~3! We solve the quantum Kramers equation for ene
diffusion to derive an explicit form of rate coefficient in th
weak friction regime and show that it reduces to no
Markovian counterpart of Ha¨nggi and Weiss@35# in the clas-
sical limit. Furthermore, it provides the rate coefficient
low-temperature tunneling~down to absolute zero! in the
quantum limit. The present theory thus interpolates betw
thermal activation and tunneling for weak dissipation with
a single scheme and is a direct extension of classical the
to quantum domain.

The classical non-Markovian Fokker-Planck equation
the energy variable for arbitrary noise correlation was fi
proposed by CN@10#. The detailed classical analysis by se
eral groups@10,35–37# revealed that the rate, in general,
significantly modified by memory effects when compared
corresponding Kramers theory in the static friction limit. A
mentioned earlier, the traditional quantum treatment of
©2002 The American Physical Society05-1
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BANERJEEet al. PHYSICAL REVIEW E 66, 051105 ~2002!
Kramers problem in weak friction limit is based on fun
tional integral approach@4# which takes care of dissipativ
tunneling@34#. Since for weak friction limit at a finite tem
perature one finds a small population at the upper ene
levels of the system which results in nonequilibrium effec
quantum correction to classical Kramers weak damping
sults above the crossover temperature is of considerable
terest. Several authors@38–43# have addressed this proble
in relation to nonequilibrium quantum tunneling out of
metastable state. Although the method of functional integ
as employed in these theories has been successful in tre
arbitrary coupling and correlation time scales in a forma
exact manner, analytic evaluation of these integrals usu
requires semiclassical approximations, e.g., semiclass
steepest descent method, WKB approach, etc., or other
cific cases, which put restriction on applicability of the the
ries in several ways. Second, the weak coupling theo
~which have been extensively used in quantum optics@44#
since 1970s! based on master equations that make use
quasiprobability functions, such as Wigner function@33# of-
ten pose serious difficulties concerning negativity or sin
larity of the probability distribution functions as discussed
detail in earlier work@45#. Third, when the system or th
system-reservoir coupling is nonlinear, the differential eq
tions concern higher~than second! derivatives of quasiprob
ability functions@46# for which quantum-classical correspo
dence gets blurred. Our approach here is based ontrue
quantum probability phase space functionand is free from
such difficulties. Furthermore, an important decisive adv
tage of the scheme is that it allows us to implement
classical non-Markov theories of activated processes in a
quantum setting without taking recourse to any semiclass
technique. In what follows we specifically apply the classi
procedure of Lax@47#, CN @10#, Büttiker, Harris, and Land-
auer ~BHL! @48#, Hänggi and Weiss@35# in our quantum
phase space formulation to develop a non-Markovian qu
tum Kramers equation in energy variable and derive an
pression for quantum rate coefficient in the spirit of classi
Kramers theory. The quantum Kramers equation and the
coefficient are classical looking in form but quantum m
chanical in their content and it is easy to recover their n
Markovian classical counterparts in the limit\→0.

The Kramers kinetics in the low friction regime is just n
a theoretical issue today but has been a subject of experim
tal investigation over the last two decades@4,49–53#. A num-
ber of experimental works in chemistry aimed at detect
Kramers turnover phenomena, in various reactions that
be conveniently explained in terms of a one-dimensio
model, e.g., iodine atom recombination in various inert s
vents@49#, chair-chair isomerization of cyclohexane@50#, ex-
cited state isomerization of 2-alkylanthracene@52#. Another
class of experiments where the energy diffusion mechan
has been successfully implemented concern resonant ac
tion of a Josephson junction@37,4# and decay of zero voltag
state in a current-biased Josephson junction@53#. The nonex-
ponential decay behavior in spin glass@4# is also an area o
active research in this context. All these problems have t
quantum counterparts which are being considered for fur
studies in rate theory although the experimental evidenc
05110
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some of the theoretical predictions in low-temperature qu
tum effects in weak friction regime is still awaited.

The outlay of the paper is as follows. We introduce
c-number representation of a generalized quantum Lang
equation in Sec. II. This formulation helps us to use t
classical formulation of CN@10# for deriving a non-
Markovian quantum Kramers equation in energy space
Sec. III. We solve the problem of quantum energy diffusi
controlled rate coefficient in the spirit of classical theo
@35,48# in Sec. IV. This reduces to classical rate express
of Kramers-Ha¨nggi-Weiss@35# form in the limit \→0. An
explicit example with a cubic potential is worked out
illustrate the theory in Sec. V. The paper is concluded
Sec. VI.

II. THE QUANTUM GENERALIZED LANGEVIN
EQUATION IN c NUMBERS

We consider a particle in a medium. The latter is mode
as a set of harmonic oscillators with frequency$v i%. Evolu-
tion of such a quantum open system has been studied
the last several decades under a variety of reasonable
sumptions. Specifically our interest here is to develop
exact description of quantum Brownian motion within th
preview of this model described by the following Ham
tonian @54#:

Ĥ5
P̂2

2
1V~X̂!1(

j
F p̂ j

2

2
1

1

2
k j~ q̂ j2X̂!2G . ~2.1!

HereX̂ andP̂ are coordinate and momentum operators of
particle and the set$q̂ j ,p̂ j% is the set of coordinate and mo
mentum operators for the reservoir oscillators coupled
early to the system through their coupling coefficientsk j .
The potentialV(X̂) is due to the external force field for th
Brownian particle. The coordinate and momentum opera
follow the usual commutation relation@X̂,P̂#5 i\ and

@ q̂ j ,p̂ j #5 i\d i j . Note that in writing the Hamiltonian no ro
tating wave approximation has been used.

Eliminating the reservoir degrees of freedom in the us
way @44,55,56# we obtain the operator Langevin equation f
the particle,

Ẍ̂~ t !1E
0

t

dt8b~ t2t8!Ẋ̂~ t8!1V8~X̂!5F̂~ t !, ~2.2!

where the noise operatorF̂(t) and the memory kernelb(t)
are given by

F̂~ t !5(
j

@$q̂ j~0!2X̂~0!%k j cosv j t1 p̂ j~0!k j
1/2sinv j t#

~2.3!

and

b~ t !5(
j

k j cosv j t, ~2.4!
5-2
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QUANTUM KRAMERS EQUATION FOR ENERGY . . . PHYSICAL REVIEW E 66, 051105 ~2002!
with k j5v j
2 ~masses have been assumed to be unity!.

Equation ~2.2! is an exact quantized operator Langev
equation which is now a standard textbook material@44# and
for which the noise properties ofF̂(t) can be defined using
suitable initial canonical distribution of the bath coordina
and momenta. Our aim here is to replace it by an equiva
quantum generalized Langevin equation~QGLE! in c num-
bers. Again this is not a new problem so long as one
restricted to standard quasiprobabilistic methods using,
example, Wigner functions@33#. To address the problem o
quantum non-Markovian dynamics in terms of atrue proba-
bilistic descriptionwe, however, follow a different proce
dure. Wefirst carry out thequantum mechanical averageof
Eq. ~2.2!,

^ Ẍ̂~ t !&1E
0

t

dt8b~ t2t8!^ Ẋ̂~ t8!&1^V8~X̂!&5^F̂~ t !&,

~2.5!

where the averagê•••& is taken over the initial produc
separable quantum states of the particle and the bath os
tors at t50, uf&$ua1&ua2&•••uaN&%. Here uf& denotes any
arbitrary initial state of the particle andua i& corresponds to
the initial coherent state of thei th bath oscillator.ua i& is
given by ua i&5exp(2uaiu2/2)(ni50

` (a i
ni/Ani !) uni&, a i being

expressed in terms of the mean values of the coordinate
momentum of the i th oscillator, ^q̂i(0)&5(A\/2v i)(a i

1a i
!) and ^ p̂i(0)&5 iA\v i /2(a i

!2a i), respectively. It is

important to note that̂F̂(t)& of Eq. ~2.5! is a classical-like
noise term which, in general, is a nonzero number becaus
the quantum mechanical averaging over the coordinate
momentum operators of the bath oscillators with respec
the initial coherent states and arbitrary initial state of
particle and is given by

^F̂~ t !&5(
j

@$^q̂ j~0!&2^X̂~0!&%k j cosv j t

1^ p̂ j~0!&k j
1/2sinv j t#. ~2.6!

It is convenient to rewrite thec-number equation~2.5! as
follows:

^ Ẍ̂~ t !&1E
0

t

dt8b~ t2t8!^ Ẋ̂~ t8!&1^V8~X̂!&5F~ t !, ~2.7!

where we let the quantum mechanical mean value^F̂(t)&
5F(t). We now turn to thesecondaverage. To realizeF(t)
as an effectivec-number noise we now assume that the m
menta ^ p̂ j (0)& and the shifted coordinates$^q̂ j (0)&
2^X̂(0)&% of the bath oscillators are distributed according
a canonical distribution of Gaussian forms as

Pj5N expH 2@^ p̂ j~0!&21k j$^q̂ j~0!&2^X̂~0!&%2#

2\v j S n̄ j1
1

2D J
~2.8!
05110
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so that for any quantum mechanical mean va
Oj„^ p̂ j (0)&,$^q̂ j (0)&2^X̂(0)&%… the statistical average
^•••&S is

^Oj&S5E Oj„^ p̂ j~0!&,$^q̂ j~0!&2^X̂~0!&%…

3Pj„^ p̂ j~0!&,$^q̂ j~0!&2^X̂~0!&%…

3d^ p̂ j~0!&d$^q̂ j~0!&2^X̂~0!&%. ~2.9!

Here n̄ j indicates the average thermal photon number of
j th oscillator at temperatureT and n̄ j51/@exp(\vj /kBT)21#
andN is the normalization constant.

The distribution~2.8! and the definition of statistical av
erage~2.9! imply that F(t) must satisfy

^F~ t !&S50 ~2.10!

and

^F~ t !F~ t8!&S5
1

2 (
j

k j\v j S coth
\v j

2kBTD cosv j~ t2t8!.

~2.11!

That is, thec-number noiseF(t) is such that it is zero cen
tered and satisfies the standard quantum fluctuat
dissipation relation as known in the literature@55# in terms of
quantum statistical average of the noise operators. The
tribution ~2.8! is thus an ansatz introduced to calculate t
ensemble average over the quantum-mechanical mean v
of the bath oscillators. Its justification lies in the fact th
with Eq. ~2.9! it reproduces the correct noise properties
the bath, i.e., the quantum fluctuation-dissipation relation
the c-number quantum noise~2.11! along with Eq.~2.10!.
Second, the distribution~2.8! has a form which is
Boltzmann-like~but not a Boltzmann distribution! since the
width parameter of the Boltzmann distributionkT gets re-
placed by\v j (n̄ j1

1
2 )

To proceed further we now add the force termV8(^x̂&) on
both sides of Eq.~2.7! and rearrange it to obtain formally

ẍ~ t !1E
0

t

dt8b~ t2t8!ẋ~ t8!1V8~x!5F~ t !1Q~x,t !,

~2.12!

where we let̂ X̂(t)&5x(t) for simple notational convenienc
and

Q~x,t !5V8~x!2^V8~X̂!& ~2.13!

represents the quantum mechanical dispersion of the f
operatorV8(X̂) due to the system degree of freedom. Sin
Q(x,t) is a quantum fluctuation term Eq.~2.12! offers a
simple interpretation. This implies that the classical looki
QGLE is governed by ac-number quantum noiseF(t) which
originates from the quantum mechanical heat bath charac
ized by the properties~2.10! and ~2.11! and a quantum fluc-
tuation termQ(x,t) due to the quantum nature of the syste
5-3
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BANERJEEet al. PHYSICAL REVIEW E 66, 051105 ~2002!
characteristic of the nonlinearity of the potential. Althou
because of the last term in Eq.~2.12! the equation looks
formal and implicit, the actual structure ofQ(x,t) gets more
transparent as we go over to the beginning of the follow
section. A recipe for calculation ofQ(x,t) is given in Refs.
@45,57,58#.

We summarize the above discussions to point out that
possible to formulate an exact QGLE~2.12! of the quantum
mechanical mean value of position of a particle in a mediu
provided the classical-like noise termF(t) satisfies Eqs.
~2.10! and~2.11!. The important new content of the approa
is that to realizeF(t) as a noise term we have split up th
standard quantum statistical averaging procedure int
quantum mechanical mean^•••& by explicitly using an ini-
tial coherent state representation of the bath oscillators
then a statistical average^•••&S of the quantum mechanica
mean values with distribution~2.8!. This is distinctly differ-
ent from the usual procedure of quantum statistical averag
where the quantum mechanical average is carried out
number states over the noise operators followed by an
semble average with Boltzmann distribution. Two pertine
points are to be noted. First, it may be easily verified that
distribution of quantum mechanical mean values of the b
oscillators~2.8! reduces to classical Maxwell-Boltzmann di
tribution in the thermal limit, \v j!kBT. Second, the
vacuum term in the distribution~2.8! prevents the distribu-
tion of quantum mechanical mean values from being sing
at T50; or in other words the width of distribution remain
finite even at absolute zero, which is a simple conseque
of uncertainty principle. The procedure has been rece
implemented by us to formulate a quantum theory of Brow
ian motion @45# and to propose anexact non-Markovian
quantum Kramers equation@32# with true probability distri-
bution functions.

III. QUANTUM KRAMERS EQUATION
IN ENERGY SPACE

Let us begin by noting that the generalized quant
Langevin equation~2.12! of a Brownian particle in presenc
of an external force field takes into account arbitrary co
pling between the system and heat bath and contains q
tum corrections,Q(x,t) due to system to all orders. To mak
the latter assertion explicit we now express the operatorX̂

and P̂ as

X̂~ t !5^X̂~ t !&1dX̂~ t !,

P̂~ t !5^P̂~ t !&1d P̂~ t !. ~3.1a!

By construction ^dX̂(t)&50, ^d P̂(t)&50, and @dX̂,d P̂#

5 i\. Expandinĝ V8(X̂)& around^X& ([x) in a Taylor se-
ries we obtain

^V8~X̂!&5V8~x!1
1

2
V-~x!^dX̂2&1•••. ~3.1b!

ThereforeQ(t) can be expressed as
05110
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Q~ t !52 (
n53

`
1

~n21!!
Vn~x!^dX̂(n21)~ t !&. ~3.1c!

HereVn(x) denotes thenth derivative of the classical poten
tial. The role ofQ(x,t) is therefore to modify the classica
potential V(x) in Eq. ~2.12!. Q(x,t) can be calculated by
solving ^dX̂n(t)& order by order. To the lowest order~sec-
ond! ^X& and ^dX̂2& follow a coupled set of equations a
given in Eqs.~55a!–~55e! of Ref. @45#. ~Higher-order equa-
tions, e.g., the fourth order equations, are given in Ref.@58#!.
For convenience, we will now split up the right hand side
Eq. ~3.1c! into a time-independent and a time-dependent p
as

Q~ t !52 (
n53

`
1

~n21!!
Vn~x!^dX̂(n21)~0!&1g~ t !,

~3.1d!

where

g~ t !52 (
n53

`
1

~n21!!
Vn~x!@^dX̂(n21)~ t !&2^dX̂(n21)~0!&#.

~3.1e!

For future use it is convenient to writeg(t) in the Taylor
series of the form

g~ t !52 (
m50

`

(
n53

`
1

~n21!!

tm

m! F ]m

]tm
Vn@x~ t !#

3$^dX̂(n21)~ t !&2^dX̂(n21)~0!&%G
t50

. ~3.1f!

The Langevin equation~2.12! then reduces to

ẍ1E
0

t

dtb~ t2t!ẋ~t!1V8~x!1 (
n53

`
1

~n21!!
Vn~x!

3^dX̂(n21)~0!&5F~ t !1g~ t !. ~3.2!

Expressing

Vq~x!5V~x!1 (
n53

`
1

~n21!!
Vn21~x!^dX̂(n21)~0!&,

~3.3!

Eq. ~3.2! takes the form

ẋ5v, ~3.4!

v̇1E
0

t

dtb~ t2t!v~t!1Vq8~x!5F~ t !1g~ t !. ~3.5a!

Equation~3.5a! is our starting Langevin equation. The pote
tial Vq(x) appearing in Eqs.~3.3! and ~3.5a! is not the clas-
sical potential but a renormalized one with quantum corr
5-4
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QUANTUM KRAMERS EQUATION FOR ENERGY . . . PHYSICAL REVIEW E 66, 051105 ~2002!
tions. The damping memory kernel~2.4! is identified by the
fluctuation-dissipation relation~2.11! by noting that in the
continuum limit

^F~ t !F~0!&S5
1

2E0

`

dvk~v!r~v!\vS coth
\v

2kBTD cosvt

[C~ t ! ~3.5b!

and

b~ t !5E
0

`

dvk~v!r~v!cosvt ~3.5c!

in the Fourier domain can be related as

C̃c~v!5
1

2
\vS coth

\v

2kBTD b̃c~v!, ~3.5d!

whereC̃c(v) and b̃c(v) are the cosine transforms ofC(t)
andb(t), respectively. For convenience we now express
Fourier transform ofb(t) as

b̃n~v!5E
0

`

dtb~ t !exp~2 invt !. ~3.6!

We now consider the following time scales in the dynam
relevant for energy diffusion in the weak friction limit,

g!1/tc!v, ~3.7!

where g is the friction arising due to interaction with th
bath, evaluated in the Markovian limit.tc is the correlation
time of the noise due to heat bath andv is the linearized
system frequency, which for a Brownian particle is assum
to be very high. This separation of time scales in Eq.~3.7!
and casting of an operator Langevin equation inc-number
form ~3.4!–~3.5a! allow us to implement a classical metho
for solving the problem of quantum energy diffusion. Fo
lowing the standard procedure one can transform Eqs.~3.4!–
~3.5a! to the action~J! and angle (f) coordinates with the
help of a Jacobian matrix as

S J̇

ḟ
D 5S 2

]v
]f

]x

]f

]v
]J

2
]x

]J

D S ẋ

v̇
D

5S 2
]v
]f

]x

]f

]v
]J

2
]x

]J

D
3S ]H

]v

2
]H

]x
2E

0

t

dtb~ t2t!v~t!1F~ t !1g~ t !
D .
05110
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Thus we have

J̇5
]x

]f F2E
0

t

dtb~ t2t!v~t!1F~ t !1g~ t !G , ~3.8!

ḟ5v~J!2
]x

]J F2E
0

t

dtb~ t2t!v~t!1F~ t !1g~ t !G .
~3.9!

Herev represents the velocity of the particle. For the det
ministic part of the system’s Hamiltonian given byH
5(1/2)v21Vq(x) we may write

v~J!5
dH~J!

dJ
. ~3.10!

Since Vq(x) @see Eq.~3.3!# contains quantum corrections
our J andf are quantum (c-number! variables as implied in
Eq. ~3.3!. In the absence of quantum corrections they b
come classical variables of CN@10#. The canonical transfor-
mation from (x,v) space to (J,f) space has been done wit
the deterministic Hamiltonian. We can therefore expandx
andv as

x~J,f!5 (
n52`

`

xn~J!exp~ inf!, ~3.11a!

v~J,f!5 (
n52`

`

vn~J!exp~ inf!, ~3.11b!

with

xn5x2n* and vn5v2n* . ~3.12!

Differentiating Eq.~3.11a! with respect to time and noting
that in the action-angle variable spaceḟ5v(J) we can write

vn~J!5 inv~J!xn~J!. ~3.13!

Since, we are considering the motion in one dimension o
we can chooseJ andf in such a way that we can make th
simplification forx5x! as

x5
1

2 (
n52`

`

@xn exp~ inf!1xn* exp~2 inf!#.

Inserting Eq.~3.12! we get

x5
1

2 (
n52`

`

@xn exp~ inf!1x2n exp~2 inf!#.

With the choice of phase

x5x2n@since Im~xn!50# ~3.14a!

x may be further expressed as
5-5
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x5 (
n52`

`

xn cosnf.

Similarly using Eqs.~3.13! and ~3.14a! we get for vn5
2v2n ,
e
,

-

th

05110
v5 (
n52`

`

vn sinnf. ~3.14b!

Inserting Eqs.~3.11a! and~3.11b! in Eqs.~3.8! and~3.9! we
obtain
J̇52 i (
n52`

`

(
m52`

`

nxn exp~ inf!E
0

t

dtb~ t2t!vm exp~ imf!1 iS~ t ! (
n52`

`

nxn exp~ inf!, ~3.15!

ḟ5v~J!1 (
n52`

`

(
m52`

`
]xn

]J
exp~ inf!E

0

t

dtb~ t2t!vm exp~ imf!2S~ t ! (
n52`

`
]xn

]J
exp~ inf!, ~3.16!
al

To
r
cal
l-
era-
the

of
is-

en
where, we have expressedS(t) as a sum of two terms; th
noise due to heat bath,F(t), and quantum correction term
g(t),

S~ t !5F~ t !1g~ t !. ~3.17!

In the equations of motion~3.15! and~3.16!, the argument of
the damping memory kernelb is (t2t). Now b decays to
zero in a timetc ~the correlation time!. So, to deal with the
integrals of Eq.~3.15! and Eq. ~3.16!, it is reasonable to
divide the range of integration into two parts:~a! ut2tu
<tc and ~b! t@tc . Thus following CN@10# we can write

f~ t !5f@t1~ t2t!#.f~t!1
]f

]t U
t5t

~ t2t!,

neglecting higher terms oftc . It follows that

f~t!.f~ t !2~ t2t!v ~3.18!

and

vm~t!.vm~ t !. ~3.19!

Equation ~3.18! and Eq.~3.19! are reasonable approxima
tions so far as the integrals of Eq.~3.15! and Eq.~3.16! are
concerned. Within the integral, we therefore manipulate
behavior off andvm for a time upto whichb(t2t) exists
and also for the observational time at whichb has decayed to
zero. So, more specifically we can write forut2tu<tc ,

E
0

t

dtb~ t2t!vm~t!exp@ imf~t!#

.vm~ t !exp@ imf~ t !#E
0

t

dtb~ t2t!exp@2 im~ t2t!v#

~3.20!

and for t@tc , using Eq.~3.6! we have
e

E
0

t

dtb~ t2t!vm~t!exp@ imf~t!#

.vm~ t !exp@ imf~ t !#b̃m~v!. ~3.21!

Putting Eq.~3.21! which takes into account the observation
time scale, in Eq.~3.15! and Eq.~3.16! we get

J̇52 i (
n52`

`

(
m52`

`

nxnvmb̃m~v!exp@ i ~n1m!f#

1 iS~ t ! (
n52`

`

nxn exp~ inf!, ~3.22!

ḟ5v~J!1 (
n52`

`

(
m52`

`

xn8vmb̃m~v!exp@ i ~n1m!f#

2S~ t ! (
n52`

`

xn8 exp~ inf!, ~3.23!

where

xn85
]xn

]J
. ~3.24!

Our next task is to formulate the Fokker-Planck equation.
this end we note that Lax@47# had prescribed a method fo
deriving Markovian Fokker-Planck equation from a classi
Langevin equation with short but finite correlation time. A
though the procedure can be extended to higher-order it
tion scheme to include non-Markovian effects, we adopt
method advocated by Carmeli and Nitzan@10# for their clas-
sical theory. This is based on Kramers-Moyal expansion
the transition probability which connects the probability d
tribution function P(J,f,t) at time t with that of P(J,f,t
1t) at a later timet1t for smallt, given that we know the
moments of the distribution. For details we refer to Risk
@59# The time evolution of the probability distribution
P(J,f,t) is determined by the equation,
5-6
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]P

]t
5 lim

t→01
F1

t (
n51

`
~21!n

n! (
(m,k50);(m1k5n)

S ]

]JD m

3S ]

]f D k

$^~DJt!
m~Df t!

k&SP%G , ~3.25!

where

DJt5DJt~t!5J~ t1t!2J~ t !,

Df t5Df t~t!5f~ t1t!2f~ t !.

At this juncture it is worth recalling thatt is the coarse-
grained time scale over which the probability distributi
function evolves, whereastc is the correlation time, which
due to low damping is much smaller thant. The low value
of g prompts us to takeg21 as the largest time scale for th
entire problem. However, the reciprocal of the frequency
oscillation, i.e.,v21, is the smallest time scale. Our task
therefore, to evaluate the moments of the fo
^(DJt)

m(Df t)
k&S where our definition of averagê•••&S is

given in Eq.~2.9!.
To evaluate the moments we make use of the follow

standard procedure@10,47#:

DJt~t!5E
0

t

dsJ̇@J~ t1s!,f~ t1s!,t1s#, ~3.26!

Df t~t!5E
0

t

dsḟ@J~ t1s!,f~ t1s!,~ t1s!#, ~3.27!

where the formsJ̇ and ḟ are given by Eq.~3.22! and Eq.
~3.23!, respectively. The iterative equations are given by,

DJt
( l )~t!5E

0

t

dsJ̇@J~ t !1DJt
( l 21)~s!,f~ t !

1Df t
( l 21)~s!,t1s#, ~3.28!

Df t
( l )~t!5E

0

t

dsḟ@J~ t !1DJt
( l 21)~s!,f~ t !

1Df t
( l 21)~s!,t1s#, ~3.29!
05110
f

g

where~l! denotes thel th iteration stage.
The non-Markovian nature~i.e., tc is finite andtc,t) of

the present problem allows us to consider, in principle,
orders oft in Eq. ~3.25!. But, since]P/]t is evaluated in the
limit t→01 , terms linear int, i.e., the coarse-grained tim
scale, are taken while all the higher powers are neglec
We now introduce the following abbreviations:

sn~J!5 inxn~J!, ~3.30!

mn~J!5
dxn~J!

dJ
, ~3.31!

Bnm~J!5 inxn~J!vm~J!b̃m@v~J!#, ~3.32!

Cnm~J!5Fdxn~J!

dJ Gvm~J!b̃m@v~J!#. ~3.33!

Substituting Eqs.~3.30!–~3.33! in Eqs.~3.22! and~3.23! we
obtain the quantum equations in the form of classical eq
tions of CN @10#,

J̇52 (
n52`

`

(
m52`

`

Bnm~J!exp@ i ~n1m!f#

1S~ t ! (
n52`

`

sn~J!exp~ inf!, ~3.34!

ḟ5v~J!1 (
n52`

`

(
m52`

`

Cnm~J!exp@ i ~n1m!f#

2S~ t ! (
n52`

`

mn~J!exp~ inf!. ~3.35!

From Eqs.~3.28! and ~3.34! we get the explicit structure o
DJt as
DJt~t!52 (
n52`

`

(
m52`

` E
0

t

dsBnm@J~ t !1DJt~s!#exp$ i ~n1m!@f~ t !1Df t~s!#%

1 (
n52`

` E
0

t

dsS~s!sn@J~ t !1DJt~s!#exp$ in@f~ t !1Df t~s!#%. ~3.36!

Similarly from Eq.~3.29! and ~3.35!, Df t is given by

Df t~t!5E
0

t

dsv@J~ t !1DJt~s!#1 (
n52`

`

(
m52`

` E
0

t

dsCnm@J~ t !1DJt~s!#exp$ i ~n1m!@f~ t !1Df t~s!#%

2 (
n52`

` E
0

t

dsS~s!mn@J~ t !1DJt~s!#exp$ in@f~ t !1Df t~s!#%. ~3.37!
5-7
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For beginning the systematic iteration procedure given
Eqs. ~3.36! and ~3.37! we initialize the zero order iteration
stage as

DJt
(0)~t!50 ~3.38a!

and

Df t
(0)~t!5v@J~ t !#t5vt. ~3.38b!

The entire process of iteration involves cumbersome
straightforward calculations, some relevant details of wh
appear in the Appendix A. Here we state only the main
sults.

Inserting Eqs.~3.38a! and ~3.38b! in the right hand sides
of Eqs.~3.36! and~3.37! we get the results of the first orde
iteration. Thus,

DJt
(1)~t!52t (

n52`

`

Bn,2n1 (
n52`

`

sn exp~ inf!

3E
0

t

dsF~s!exp~ invs!1 (
n52`

`

sn exp~ inf!

3E
0

t

dsg~s!exp~ invs! ~3.39!

and

Df t
(1)~t!5vt1t (

n52`

`

Cn,2n2 (
n52`

`

mn exp~ inf!

3E
0

t

dsF~s!exp~ invs!2 (
n52`

`

mn exp~ inf!

3E
0

t

dsg~s!exp~ invs!, ~3.40!

where in writing Eqs.~3.39! and ~3.40! we have used Eq
~3.17!. For the second iteration we put Eqs.~3.39! and~3.40!
back into Eqs.~3.36! and ~3.37! and thus obtainDJt

(2)(t)
andDf t

(2)(t). Putting them back into Eqs.~3.36! and~3.37!
again we obtainDJt

(3)(t) andDf t
(3)(t). These are presente

in some details in Appendix A.
In calculating the moments as demanded by Eq.~3.25!,

we have neglected all higher powers (n>2) of t and 1/v.
The reason for doing this in case oft is clear from the limit
imposed ont in Eq. ~3.25!. For 1/v also, this approximation
is legitimate since 1/v is the shortest time scale of the pro
lem @see inequality~3.7!#. The final results for the moment
are

^@DJt~t!#2&S54t (
n51

`

n2uxnu2C̃n
c~v!, ~3.41!

^@Df t~t!#2&S54t (
n51

` Udxn

dJ U
2

C̃n
c~v!, ~3.42!
05110
y

t
h
-

^@DJt~t!#@Df t~t!#&S50, ~3.43!

^DJt~t!&S522t (
n51

`

n2Fvuxnu2b̃n
c~v!2

d

dJ
$uxnu2C̃n

c~v!%G ,
~3.44!

^Df t~t!&S5vt1t (
n51

`

nFvb̃n
sduxnu2

dJ
2

d

dJ S C̃n
sduxnu2

dJ D G
2t f 08m0tc , ~3.45!

where

b̃n
c5E

0

`

dtb~ t !cos~nvt !, ~3.46a!

b̃n
s5E

0

`

dtb~ t !sin~nvt !, ~3.46b!

C̃n
c5E

0

`

dtC~ t !cos~nvt !, ~3.46c!

C̃n
s5E

0

`

dtC~ t !sin~nvt !, ~3.46d!

and

f 0852 (
n53

`
1

~n21!!

]

]t
@Vn

„x~ t !…$^dX̂n21~ t !&

2^dX̂n21~0!&%#. ~3.46e!

Also

b̃n~v!5b̃n
c~v!2 i b̃n

s~v!, ~3.46f!

C̃n~v!5C̃n
c~v!2 iC̃n

s~v!. ~3.46g!

Some remarks are needed in connection with Eq.~3.41! to
Eq. ~3.45!. Let us now examine how the quantum notion
implied in Eqs.~3.41!–~3.45!. First, all the moments are th
functions of the Fourier componentsxn(J) where J is a
quantumc number. Second, the moments are crucially d
pendent on the Fourier components of quantum correla
function C(t) of the heat bath. In the classical limitxn(J)
becomes the function of the classical action variableJ and
also C̃n(v) reduces toC̃n(v)5kBTb̃n(v). We thus obtain

^@DJt~t!#2&S54tkBT(
n51

`

n2uxnu2b̃n
c~v!,

^@Df t~t!#2&S54tkBT(
n51

` Udxn

dJ U
2

b̃n
c~v! ~3.47!

in the high-temperature limit\v!kBT. The last term in Eq.
~3.45! is due to a correction to frequencyv and is of pure
quantum origin~3.1f!. f 08 is precisely the coefficient oft in
5-8
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QUANTUM KRAMERS EQUATION FOR ENERGY . . . PHYSICAL REVIEW E 66, 051105 ~2002!
the Taylor expansion of Eq.~3.1f!. tc is the ‘‘cut-off’’ time
upto which the quantum fluctuation remains linear in tim
and is approximated as;1/v, as allowed by the time scal
of the problem. Thus the quantum character of the nonlin
system enters into the description in two different wa
First, classical Hamiltonian gets modified by quantum c
rections att50 @see Eq.~3.3!#. This makes action angle
variables bear quantum signature. Second, the quantum
rection for t.0 as contained ing(t) makes its presence i
phase drift term in Eq.~3.45!.

Inserting Eqs.~3.41!–~3.45! in Eq. ~3.25! and thereby dis-
regarding terms withn.2 with the following definitions:

e~J!52(
n51

`

n2uxnu2b̃n
c~v!, ~3.48!

G~J!52(
n51

` Udxn

dJ U
2

C̃n
c~v!, ~3.49!

V~J!5v1 (
n51

`

nFvb̃n
sduxnu2

dJ
2

d

dJ S C̃n
sduxnu2

dJ D G2 f 08m0tc ,

~3.50!

we obtain the Fokker-Planck equation forP(J,f,t) as

]P~J,f,t !

]t
5

]

]J F2(
n51

`

n2uxnu2b̃n
c~v!

3H C̃n
c~v!

b̃n
c~v!

]

]J
1v~J!J PG

1G~J!
]2P

]f2
2V~J!

]P

]f
. ~3.51!

If the distribution function is initially independent off it
satisfies the quantum diffusion equation in action space

]P~J,t !

]t
5

]

]J Fe~J!H L
]

]J
1v~J!J PG , ~3.52!

where by virtue of Eq.~3.5d! we write

L5L~v̄!.
C̃n

c~v̄ !

b̃n
c~v̄ !

or

L5\v̄ @ n̄~v̄ !11/2#. ~3.53!

Here v̄ is the linearized frequency andL plays the typical
role of kBT. We have

v~J!5
]H

]J
5

dE

dJ
.

Expressing
05110
ar
.
-

or-

v~J!5n~E!, ~3.54!

we have

]

]J
5n~E!

]

]E
. ~3.55!

With this transformation the quantum Kramers equation
energy diffusion@Eq. ~3.52!# looks like

]P~E,t !

]t
5

]

]E FD~E!S ]

]E
1

1

L D n~E!P~E,t !G ,
~3.56!

where the diffusion coefficient is given by

D~E!5n~E!2\v̄F n̄~v̄ !1
1

2G (
n51

`

n2uxnu2

3E
0

`

dtb~ t !cos@nn~E!t#. ~3.57!

Equation (3.56! is the first key result of the present pape.
The equation is valid for arbitrary temperature and noise c
relation. The prime quantities that determine the equation
energy diffusion~3.56! are the diffusion coefficientsD; the
quantum analog ofkT, L; and the frequency of the dynam
cal system,n(E). It is important to note that all the quant
ties as defined by Eqs.~3.57!, ~3.53! and~3.54!, respectively,
contain quantum contributions. In the classical lim
Eq. ~3.53! reduces to kT when n̄(v̄)@1/2 and
n̄(v̄)@5$exp(\v̄/kT)21%21#'kT/\v̄. Since by virtue
~3.54! n(E)5v(J)5]H/]J with H defined as H
5(1/2)v21Vq(x) where Vq(x) includes quantum
corrections over the classical potentialV(x) according to
Eq. ~3.3!, n(E) reduces to classical frequency in the classi
limit as \→0. Although the expression for the diffusio
coefficient~3.57! looks a bit complicated and formal due t
the appearance of the Fourier coefficientsxn in the summa-
tion, it is possible to read the various terms inD(E) in the
following way. D(E) is essentially an approximate produ
of three terms,\v̄@ n̄(v̄)11/2#, *0

`dtb(t)cos@nn(E)t#, and
n(E)(n51

` n2uxnu2, where then dependence of the latter tw
contributions have been separated out for interpretation.
integral is the Fourier transform of the memory kernel, wh
the sum can be shown to be equal toJ ~Appendix D of Ref.
@10#!, which is the quantum action variable. In the classi
limit the quantum diffusion coefficientD(E), therefore,
clearly reduces to the classical diffusion coefficient of C
meli and Nitzan@10#. A few further remarks on the relate
issues may be made at this point. To address the proble
nonequilibrium quantum tunneling above crossover tempe
ture ~nonequilibrium situation arises due to the significa
growth of population above zero levels at temperature ab
crossover since the dissipation is very weak!, several authors
@38–43# have advocated the use of a probability function p
unit time ~of finding the system in the barrier region near
classical turning point with energyE) which obeys an inte-
5-9
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gral equation@43# whose differential approximation leads
an equation similar~not the same! to Eq.~3.56!. The notable
difference is in the fact that the former equation is applica
above crossover temperature while Eq.~3.56! works at all
temperatures down to vacuum limit. The energy loss coe
cient in Eq. ~3.56!, i.e., D(E)/L when put into the form
@using Eq.~3.53!#

D~E!

L
5E

0

`

dtb~ t !n~E! (
n51

`

2n2uxnu2cos@nn~E!t#

is comparable to that of Griffet al. @43#, the intergrand with-
out b(t) being a function of action~or equivalently energy!.
These results can be utilized as a consistency check o
present scheme.

IV. QUANTUM ENERGY DIFFUSION CONTROLLED
RATE OF ESCAPE

The classical treatment of memory effects in the ene
diffusion controlled escape is now well documented in
literature@10,35,36#. To address the corresponding proble
in the quantum domain we start by recasting the Kram
equation in the energy diffusion regime@Eq. ~3.52!# in the
form of a continuity equation to obtain

]P~E,t !

]t
1

] j E

]E
50, ~4.1!

where j E is the flux along the energy coordinate at therm
equilibrium and is given by

j E52D~E!F ]

]E
1

1

LGn~E!Pst~E!, ~4.2!

wherePst is the stationary probability distribution. For zer
current condition, we have the equilibrium distribution,Peq
at the source well as

Peq~E!5
N21

n~E!
exp~2E/L!5

N21

n~E!
exp@2~Ec1DQ!/L#,

~4.3!

where we have split the energy into classical (Ec) and quan-
tum (DQ) parts, the contribution arising from the latter b
ing very small. We now define the rate of escapek as flux
over population

k5
j E

na
, ~4.4!

where

na5~ total population at the source well!5E
0

Eb
c

P~E!dE.

~4.5!

HereEb
c is the classical value of the activation barrier. Fo

lowing BHL @48# we use a Kramers like ansatz
05110
e

-

he

y
e

rs

l

P~E!5h~E!Peq~E! ~4.6!

to arrive at

j E52D~E!n~E!Peq~E!
]h~E!

]E
. ~4.7!

Integrating the above expression fromE5E1.L @see Eq.
~3.53!# to E5Eb

c , one derives an expression for energy i
dependent currentj E ~with E<Eb

c) as

j E5
@h~L!2h~Eb

c!#

E
L

Eb
c dE

D~E!n~E!Peq~E!

5@12h~Eb
c!#D~Eb

c!
N21

L
e2Eb

c/L, ~4.8!

where we have used the boundary conditionh(L).1.
Following the original reasoning by BHL we now allow

an outflow j out from each energy rangeE to E1dE, with
eachE satisfying the conditionE>Eb

c . Then we can write

d jout5an~E!h~E!Peq~E!dE, ~4.9!

which is compensated by a divergence in the vertical flo

d jE
dE

52an~E!h~E!Peq~E!. ~4.10!

Herea is a parameter that has been set approximately e
to one by BHL. Inserting the expression for nonequilibriu
current Eq.~4.7!, we obtain the ordinary differential equatio
for h(E) as

D~E!
d2h

dE2
1FdD~E!

dE
2D~E!

1

LG dh

dE
2ah~E!50.

~4.11!

Within small energy range aboveEb
c one can assume esse

tially a constant diffusion co-efficient, i.e.,

FdD~E!

dE G
E.E

b
c
50 for E>Eb

c . ~4.12!

Substituting a trial solution of the formh(E)5C exp(sE/L)
for s,0, in Eq. ~4.11! we have

s252
1

2 F S 11
4aL2

D~Eb
c!
D 1/2

21G . ~4.13!

Setting h(E)5h(Eb
c)exp@s(E2Eb

c)/L# and putting this into
Eq. ~4.7! and comparing this with the right hand side of E
~4.8! we have

h~Eb
c!51/~12s! for s,0. ~4.14!

Thus, escape ratek can be obtained as
5-10
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k5 j EF E
0

Eb
c

h~E!Peq~E!dEG21

. ~4.15!

Making use of Eq.~4.14! in Eq. ~4.8! and the resulting ex-
pression forj in Eq. ~4.15! we obtain

k5
2s

12s
F E

0

Eb
c

h~E!Peq~E!dE

~N21/L!D~Eb
c!exp~2Eb

c/L!
G21

. ~4.16!

For the dynamics at the bottom we haveh→1. Recalling
that E5Ec1DQ, whereDQ is the quantum contribution to
classical energy, we expandE in a Taylor series. HereEc

5(v2/2)1V(x) andDQ(x) is the quantum correction term
in Eq. ~3.3!. Retaining terms upto the second order inx, and
making harmonic approximation around the bottom of
well at x50, we get

E5
p2

2
1

1

2
v0

2x21DQ01DQ08x1
1

2
DQ09x

2, ~4.17!

wherev0 corresponds to the frequency at the bottom of
classical potential V(x) at x50 so that v0

2

5]2V(x)/]x2ux50. The subscript zeros inDQ0 , DQ08 , and
DQ09 are the quantities evaluated at this point.

Now na , the total population at the source well, can
evaluated as

na5E
2`

` E
2`

`

Peq~E!dxdp

5exp@2DQ0 /L#E
2`

`

exp~2v2/2L!dv

3E
2`

`

expF2
1

L S 1

2
v0

2x21DQ08x1
1

2
DQ09x

2D Gdx.

Thus

na5
1

N

2pL

Av0
21DQ09

expF2
DQ0

L
1

~DQ08!2

2L~v0
21DQ09!

G .

~4.18!

So, the quantum non-Markovian rate of escape from a m
stable well in the low-friction regime is given by

k5F $11~4aL2!/D~Eb
c!%1/221

$11~4aL2!/D~Eb
c!%1/211

GD~Eb
c!

L2

Av0
21DQ09

2p

3expF2
1

L H Eb
c2DQ01

~DQ08!2

2~v0
21DQ09!

J G . ~4.19!

The above expression is the second key result of the pap. It
has the form of the celebrated Arrhenius expression for
coefficient with the classical activation energyEb

c in the ex-
ponential factor and a complicatedL andD dependent quan
tity in the preexponential factor. As noted earlier in the d
05110
e

e

a-

te

-

tailed discussion of quantum diffusion coefficient in th
context of Eq.~3.56!, the diffusion coefficientD(E) is con-
tributed by the three factors and has to be evaluated at
barrier top. The main effect of the preexponential factor
that the rate becomes proportional to the damping coeffic
and the memory kernel results in the decrease of prefa
for increasing correlation time. The structure of the rate
pression~4.19! suggests that it has the same form of t
preexponential factor as that of Ha¨nggi and Weiss@35# al-
though its content is quantum mechanical in character.
quantum mechanical content of the rate expression lie
several quantities, e.g., quantum diffusion coefficientD(Eb

c),
quantum analog ofkBT, L as given by Eqs.~3.57! and
~3.53!, respectively. The frequency at the bottom of the we
v0 as well as the classical activation energyEb

c get modified
by quantum correctionDQ09 and DQ0 terms. The result of
Hänggi and Weiss@35# for the classical non-Markovian cas
can then be appropriately recovered. It is thus apparent
quantum correction terms in the exponential factor in E
~4.19! depend on the nature of the potential which in tu
determines the rate. In what follows in the following secti
we illustrate the results with a specific cubic potential
Kramers form. We mention in passing that throughout
treatment the noise intensity needs to be small for the re
~4.19! to be a good description of the activated process c
trolled by energy diffusion.

V. AN EXAMPLE WITH CUBIC POTENTIAL

We consider a model cubic potential of the formV(X̂)
52(1/3)AX̂31BX̂2. A and B are two constant paramete
of the problem withA.0 andB.0. Then by virtue of Eq.
~3.3! we have thec-number form of quantum potential,

Vq~x!52
A

3
x31Bx22A^dX̂2~0!&x1const ~5.1!

so that the time independent Hamiltonian is given by

H~x,v !5
v2

2
2

A

3
x31Bx22Cx5E, ~5.2!

where C5A\/(2A2B). We have used ^dX̂2(0)&
5\/(2A2B), the minimum uncertainty, and ignored th
constant part inVq(x). HereC refers to quantum contribu
tion to classical potential due to which the minimum, t
metastable point corresponding toVq(x) shifts to x0
5C/(2B) ~with respect to the corresponding classical me
stable minimum atx50).

Linearizing the potentialVq(x) aroundx0 we obtain

Vq~x!5Vq~x0!1S B2
AC

2B D ~x2x0!2. ~5.3!

We then calculate the actionJ, the usual form of which is
given by
5-11
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J5
1

p E
x1

x2
vdx. ~5.4!

x1 andx2 are the two turning points of oscillation for whic
v is equal to zero and they jointly correspond to a particu
value of the system energyE. In principle, they are the firs
two roots ~in ascending order of magnitude! of the cubic
equation

A

3
x32Bx21Cx1E50, ~5.5!

the third root being irrelevant for the present purpose.x1 and
x2, however, can be approximately calculated by simply p
ting Vq(x)5E ~sincev50 is the turning point! in Eq. ~5.3!
and solving the resulting equation forx,

x1,2.x07S E2Vq~x0!

B D 1/2

. ~5.6!

Putting the value ofv from Eq. ~5.2! in Eq. ~5.4! we get the
action integral in the form

J5
A2

p E
x1

x2F ~E2Bx2!1S A

3
x31CxD G1/2

dx. ~5.7!

Putting Eq.~3.54! in Eq. ~3.57! we can express the quantu
diffusion coefficient in terms of the action as

D̃~J!5v~J!2\v̄0F n̄~v̄0!1
1

2G
3 (

n51

`

n2uxnu2E
0

`

dtb~ t !cos@nv~J!t#, ~5.8!

where we have replacedD(E) by D̃(J) to emphasize the
change made in the argument. Furthermore, for unit mas
the Brownian particle we may write@10#

v~J! (
n52`

`

n2uxn~J!u25J. ~5.9!

Putting Eq.~5.9! in Eq. ~5.8! the diffusion coefficient can be
approximately expressed as

D̃~J!.2J\v̄0F n̄~v̄0!1
1

2G E
0

`

dtb~ t !cos@nv~J!t#.

~5.10!

For the present form of model potential we also ha
DQ(x)52Cx for which DQ050, DQ0950 and DQ085
2C. With these expressions for quantum contributions a
making use of Eq.~5.10! in Eq. ~4.19! we have the final
expression for the escape rate as
05110
r

t-

of

e

d

k5
v0

2p F $11~4aL2!/D̃~Jb!%1/221

$11~4aL2!/D̃~Jb!%1/211
G D̃~Jb!

L2

3expF2
1

L H Eb
c1

A2\2

4v0
3 J G . ~5.11!

HereJb denotes the value of the action of the system at
barrier top. It should be noted that it includes both the cl
sical and quantum contributions.Eb

c corresponds to classica
activation energy which gets modified by a contribution d
to quantum correction entangled with the nonlinearity of t
potential. It is important to note that the positivity of th
factor (A2\2)/(4v0

3L) in the exponential in Eq.~5.11! re-
sults in a larger effective activation barrier which caus
a net reduction of the full rate below its correspondi
classical value. This is in good agreement with the ear
observation by Griff et al. @43# and is somewhat
counterintuitive—as emphasized by Ha¨nggi et al. @4# to the
fact that full rate comprises classical rate and zero temp
ture tunneling. The quantum reduction of total rate in t
weak friction regime is a manifestation of interplay of the
mal noise and quantum fluctuation and is expected to
pronounced for systems with flat barriers, commonly e
countered in absorption-desorption processes in surface
nomena@4#.

VI. CONCLUSIONS

Based on a true quantum phase space distribution func
and an ensemble average procedure we have derived a
eralized Kramers equation for energy diffusion and analy
the quantum transmission coefficient associated with the
coefficient within a full quantum mechanical framework
the low friction regime. The present formulation is a comp
mentary follow-up to our recent work@32# on quantum
Kramers theory in the spatial diffusion limited regime. Th
main conclusions of this study are the following.

~i! The proposed Kramers equation in the energy diffus
regime is an exact quantum analog of non-Markovian cl
sical Kramers equation derived by CN@10# in 1980s. The
equation retains its full validity both in the classical an
vacuum limits at arbitrary temperature and noise correlat
of the heat bath.

~ii ! The generalized quantum rate coefficient for the de
from a metastable well reduces to Kramers-Ha¨nggi-Weiss
rate @35# in the classical limit and to pure weak dissipativ
tunneling rate in the quantum limit at zero temperature.

~iii ! While in the intermediate to strong damping regim
the total Kramers rate comprising classical as well as qu
tum rate is always higher than the corresponding class
rate, the notable feature in the weak friction regime~for a
metastable potential! is a net quantum reduction of the tot
rate below its corresponding classical value. This is in c
formity with the earlier observation in this context@43#.

~iv! While the existing methods of calculation of quantu
Kramers rate are based on path integral techniques@4,21–
23,60,61#, we rely on a canonical quantization procedure a
true probability distribution function ofc-number variables.
5-12
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To the best of our knowledge the implementation of a diff
ential equation and its solution as a boundary value prob
have not been tried before for quantum Kramers proble
The methodology as pursued here allows us to apply cla
cal techniques for the quantum problem of barrier cross
dynamics.

~v! The quantum effects appear in the present formula
in two different ways. The nonlinear part of the potential
the system gives rise to quantum dispersion, while the h
bath imparts quantum noise. An important advantage of
present method is that it is possible to incorporate quan
corrections to all orders and one need not invoke any se
classical technique which is almost always used in the p
tical evaluation of the formal functional integrals.

The present scheme of mapping of the quantum theor
Brownian motion in energy space into a classical form off
an opportunity to generate quantum noise as classicalc num-
bers and study numerically the quantum stochastic dynam
independent of path integral Monte Carlo techniques@62–
64#. We hope to address this issue in a future commun
tion.
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APPENDIX A: CALCULATION OF MOMENTS

Some details of the calculations involving the iteratio
~upto the third order! for determination of the moments hav
been shown here. The procedure followed here is tha
classical theories of Carmeli and Nitzan@10#. We have
stressed the steps for which the quantum contributions f
essentially new content.

1. First iteration

Inserting Eq.~3.38a! and Eq. ~3.38b! in Eq. ~3.36! we
have
DJt
(1)~t!52 (

n52`

`

(
m52`

`

Bnm exp@ i ~n1m!f#E
0

t

dsexp@ i ~n1m!vs#1 (
n52`

`

sn exp~ inf!E
0

t

dsF~s!exp~ invs!

1 (
n52`

`

sn exp~ inf!E
0

t

dsg~s!exp~ invs!, ~A1!
es
ts.

n-
ise
m

where we have suppressed the arguments of quantitiesBnm ,
sn , andf for the sake of brevity. Now, from Eq.~3.7! and
the argument following Eq.~3.25! we can infer thatvt
@1. So we can write

E
0

t

dsexp@ i ~n1m!vs#.tdn,2m ~A2!

for which

(
n,m52`

`

Bnm exp@ i ~n1m!#tdn,2m5t (
n52`

`

Bn,2n .

~A3!

Thus,

DJt
(1)~t!52t (

n52`

`

Bn,2n1 (
n52`

`

sn exp~ inf!

3E
0

t

dsF~s!exp~ invs!1 (
n52`

`

sn exp~ inf!

3E
0

t

dsg~s!exp~ invs!. ~A4!

Similarly from Eq.~3.37! we have
Df t
(1)~t!5vt1t (

n52`

`

Cn,2n2 (
n52`

`

mn exp~ inf!

3E
0

t

dsF~s!exp~ invs!2 (
n52`

`

mn exp~ inf!

3E
0

t

dsg~s!exp~ invs!. ~A5!

Along with these we will also require the statistical averag
of the above expressions for calculation of the momen
Thus,

^DJt
(1)~t!&S52t (

n52`

`

Bn,2n1 (
n52`

`

sn exp~ inf!

3E
0

t

dsg~s!exp~ invs!, ~A6!

where we have used Eq.~2.10!. We can proceed further with
Eq. ~A6! and cast it in a more transparent form. In this co
text it is worth mentioning that so far as the quantum no
g(t) is concerned, we take only the significant terms fro
Eq. ~3.1f! which result in terms linear int. Referring back to
Eq. ~3.32! we then have
5-13
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2t (
n52`

`

Bn,2n52t (
n52`

`

n2vuxnu2b̃n~v!

522t (
n51

`

n2vuxnu2b̃n
c~v!, ~A7!

using Eq.~3.46a!. The second expression of Eq.~A6! has
been shown to be negligible in Appendix B. Thus

^DJt
(1)~t!&S522t (

n51

`

n2vuxnu2b̃n
c~v!. ~A8!

Similarly from Eq.~A5! we have

^Df t
(1)~t!&S5vt1t (

n51

`

nv
duxnu2

dJ
b̃n

s2t f 08m0tc .

~A9!

In deriving Eq.~A9! we have used Eqs.~3.31! and ~3.33!.
Otherwise, the way leading to Eq.~A9! is similar to that of
Eq. ~A8!. The origin of the last term is the same integral th
appears in Eq.~A6! and is shown in Appendix B.
ex

on
io

e

05110
t

2. Second iteration

Here we insert Eqs.~A4! and ~A5! into the right hand
sides of Eq.~3.36! and Eq.~3.37!. Keeping in mind Eqs.
~3.38a! and ~3.38b!, we expand the functions ofDJt(s) and
Df t(s), viz., Bnm , Cnm , sn , andmn , keeping terms up to
the first order only. Thus,

Bnm@J~ t !1DJt~s!#5Bnm1Bnm8 DJt~s! ~A10a!

with

Bnm5Bnm@J~ t !# ~A10b!

and

Bnm8 5FdBnm

dJ G
J5J(t)

. ~A10c!

The expansion has been done aboutDJt
(0)(s)50 and

Df t
(0)(s)5vs. The same expansion procedure is follow

for Cnm , sn , mn , and the exponentials as well, occurring
Eqs.~3.36! and ~3.37!. We therefore obtain
DJt
(2)~t!5DJt

(1)~t!2 (
n52`

`

(
m52`

`

(
l 52`

`

@Bnm8 s l2 i ~n1m!Bnmm l #exp@ i ~n1m1 l !f#E
0

t

dsE
0

s

ds1F~s1!exp@ i ~n1m!vs

1 i l vs1#2 (
n52`

`

(
m52`

`

(
l 52`

`

@Bnm8 s l2 i ~n1m!Bnmm l #exp@ i ~n1m1 l !f#E
0

t

dsE
0

s

ds1g~s1!exp@ i ~n1m!vs

1 i l vs1#1 (
n52`

`

(
l 52`

`

~sn8s l2 insnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1F~s!F~s1!exp~ invs1 i l vs1!

1 (
n52`

`

(
l 52`

`

~sn8s l2 insnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1F~s!g~s1!exp~ invs1 i l vs1!1 (
n52`

`

(
l 52`

`

~sn8s l

2 insnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1g~s!F~s1!exp~ invs1 i l vs1!1 (
n52`

`

(
l 52`

`

~sn8s l2 insnm l !

3exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1g~s!g~s1!exp~ invs1 i l vs1!. ~A11!
The derivation of this form of Eq.~A11! requires two impor-
tant steps to be followed. The first step is just a Taylor
pansion. While putting Eqs.~A4! and~A5! in Eq. ~3.36! and
Eq. ~3.37!, we come across several integrals that contain
quantity in common in the integrands. This is an express
of the form exp@ik$f(t)1Dft

(1)(s)%#, where k is an integer.
The first part, i.e., exp@ikf(t)#, being a function oft, can be
taken outside the integral while the second part can be d
with as follows:
-

e
n

alt

exp@ ik$Df t
(1)~s!%#

5exp@ ik$Df t
(1)~s!2Df t

(0)~s!%#exp@ ik$Df t
(0)~s!%#

5@11 ik$Df t
(1)~s!2vs%#exp~ ikvs!. ~A12!

Here we have used Eq.~3.38b! and as an essential step~sec-
ond! discarded the nonlinear terms. Also, sinceDJt

(1)(t) and
Df t

(1)(t) are of orderO(t), we have
5-14
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DJt
(1)~s!exp@ ikDf t

(1)~s!#.DJt
(1)~s!exp~ ikvs!. ~A13!

Guided by the same physical reasoning, we assert that all integrals of the form*0
tdssF(s), with F(s) being finite ass→0,

yield terms of the ordertn(n.1), and are hence neglected. In a similar way, we can obtain the second iteration onf. Thus,

Df t
(2)~t!5Df t

(1)~t!1v8 (
n52`

`

sn exp~ inf!E
0

t

dsE
0

s

ds1F~s1!exp~ invs1!

1v8 (
n52`

`

sn exp~ inf!E
0

t

dsE
0

s

ds1g~s1!exp~ invs1!1 (
n52`

`

(
m52`

`

(
l 52`

`

@Cnm8 s l2 i ~n1m!Cnmm l #

3exp@ i ~n1m1 l !f#E
0

t

dsE
0

s

ds1F~s1!exp@ i ~n1m!vs1 i l vs1#

1 (
n52`

`

(
m52`

`

(
l 52`

`

@Cnm8 s l2 i ~n1m!Cnmm l #exp@ i ~n1m1 l !f#E
0

t

dsE
0

s

ds1g~s1!exp@ i ~n1m!vs1 i l vs1#

2 (
n52`

`

(
l 52`

`

~mn8s l2 inmnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1F~s!F~s1!exp~ invs1 i l vs1!

2 (
n52`

`

(
l 52`

`

~mn8s l2 inmnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1F~s!g~s1!exp~ invs1 i l vs1!

2 (
n52`

`

(
l 52`

`

~mn8s l2 inmnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1g~s!F~s1!exp~ invs1 i l vs1!

2 (
n52`

`

(
l 52`

`

~mn8s l2 inmnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1g~s!g~s1!exp~ invs1 i l vs1!. ~A14!

We next require to calculate the averages^DJt
(2)(t)&S and ^Df t

(2)(t)&S . By virtue of Eq.~2.10!, the former yields

^DJt
(2)~t!&S5^DJt

(1)~t!&S2 (
n52`

`

(
m52`

`

(
l 52`

`

@Bnm8 s l2 i ~n1m!Bnmm l #exp@ i ~n1m1 l !f#E
0

t

dsE
0

s

ds1g~s1!exp@ i ~n1m!

3vs1 i l vs1#1 (
n52`

`

(
l 52`

`

~sn8s l2 insnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1^F~s!F~s1!&exp~ invs1 i l vs1!

1 (
n52`

`

(
l 52`

`

~sn8s l2 insnm l !exp@ i ~n1 l !f#E
0

t

dsE
0

s

ds1g~s!g~s1!exp~ invs1 i l vs1!. ~A15!
rs
i

.,

l
y:
In Eq. ~A15! we encounter three double integrals. The fi
and consequently the third are shown to be negligible
Appendix B. For the second integral, viz
*0

tds*0
sds1^F(s)F(s1)&Sexp(invs1ilvs1), or *0

tds*0
sds1

3C(s2s1)exp(invs1ilvs1), we refer to Ref.@10#. In Ap-
pendix C of Ref.@10# this type of integral of more genera
form have been evaluated. Here we state the results onl
05110
t
n I n,l

( j )5E
0

t

dsE
0

s

ds1E
0

s1
ds2•••E

0

sj 21

dsjC~s2sj !

3exp@ invs1 i l vsj #

.
1

~ j 21!! S i

l D
( j 21) dj 21b̃ l~v!

dv j 21
tdn,2 l . ~A16!
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The important physical consideration here is to neglect
terms of orderC̃(v)/v. The rest of the task amounts t
solving the above integral, also known as the Dirichlet’s co
dition for multiple integrals. Thus the integrals of the thi
term in the right hand side of Eq.~A15! reduce to,

E
0

t

dsE
0

s

ds1C~s2s1!exp~ invs1 i l vs1!5tb̃ l~v!dn,2 l .

~A17!

Putting Eq.~A17! back into Eq.~A15! yields, after a little
algebra,

^DJt
(2)~t!&S5^DJt

(1)~t!&S12t (
n51

`

n2
duxnu2

dJ
C̃n

c~v!,

which, after using Eq.~A8!, reduces to
05110
e

-
^DJt

(2)~t!&S522t (
n51

`

n2Fvuxnu2b̃n
c~v!2

duxnu2

dJ
C̃n

c~v!G .
~A18!

In a similar manner we also get

^Df t
(2)~t!&S5vt1t (

n51

`

nFvb̃n
s2C̃n

s d

dJG duxnu2

dJ
2t f 08m0tc .

~A19!

Next we step out for the final iteration stage, the third on

3. Third iteration

Inserting Eq.~A11! and Eq.~A14! in Eq. ~3.36! and Eq.
~3.37! as before we get the expansions forDJt

(3)(t) and
Df t

(3)(t) which we write in the following convenient form
DJt
(3)~t!5DJt

(2)~t!2 (
n52`

`

(
m52`

`

Bnm8 exp@ i ~n1m!f#E
0

t

ds@DJt
(2)~s!2DJt

(1)~s!#exp@ i ~n1m!vs#

2 (
n52`

`

(
m52`

`

i ~n1m!Bnm exp@ i ~n1m!f#E
0

t

ds@Df t
(2)~s!2Df t

(1)~s!#exp@ i ~n1m!vs#1 (
n52`

`

sn8 exp~ inf!

3E
0

t

ds@DJt
(2)~s!2DJt

(1)~s!#F~s!exp~ invs!1 (
n52`

`

insn exp~ inf!E
0

t

ds@Df t
(2)~s!

2Df t
(1)~s!#F~s!exp@ invs#1 (

n52`

`

sn8 exp~ inf!E
0

t

ds@DJt
(2)~s!2DJt

(1)~s!#g~s!exp~ invs!

1 (
n52`

`

insnexp~ inf!E
0

t

ds@Df t
(2)~s!2Df t

(1)~s!#g~s!exp@ invs# ~A20!

and

Df t
(3)~t!5Df t

(2)~t!1v8E
0

t

ds@DJt
(2)~s!2DJt

(1)~s!#1 (
n52`

`

(
m52`

`

Cnm8 exp@ i ~n1m!f#E
0

t

ds@DJt
(2)~s!2DJt

(1)~s!#

3exp@ i ~n1m!vs#1 (
n52`

`

(
m52`

`

i ~n1m!Cnm exp@ i ~n1m!f#E
0

t

ds@Df t
(2)~s!2Df t

(1)~s!#exp@ i ~n1m!vs#

2 (
n52`

`

mn8 exp~ inf!E
0

t

ds@DJt
(2)~s!2DJt

(1)~s!#F~s!exp~ invs!2 (
n52`

`

inmn exp~ inf!

3E
0

t

ds@Df t
(2)~s!2Df t

(1)~s!#F~s!exp~ invs!2 (
n52`

`

mn8 exp~ inf!E
0

t

ds@DJt
(2)~s!2DJt

(1)~s!#

3g~s!exp~ invs!1 (
n52`

`

inmn exp~ inf!E
0

t

ds@Df t
(2)~s!2Df t

(1)~s!#g~s!exp~ invs!. ~A21!
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It is needless to carry out further iterations because they y
terms of orderC̃(v)/v even in the order oft, and hence are
negligible. From this point we therefore proceed to calcul
the momentŝ (DJ)m(Df)k&S as the right hand side of Eq
~3.25! demands. While performing the averaging, some in
grals occur in common with both^DJt

(3)(t)&S and
^Df t

(3)(t)&S . They are as follows:

I 15E
0

t

dŝ @DJt
(2)~s!2DJt

(1)~s!#&S , ~A22a!

I 25E
0

t

dŝ @DJt
(2)~s!2DJt

(1)~s!#&Sexp@ i ~n1m!vs#,

~A22b!

I 35E
0

t

dŝ @Df t
(2)~s!2Df t

(1)~s!#&Sexp@ i ~n1m!vs#,

~A22c!

I 45E
0

t

dŝ @DJt
(2)~s!2DJt

(1)~s!#F~s!&Sexp~ invs!,

~A22d!

I 55E
0

t

dŝ @Df t
(2)~s!2Df t

(1)~s!#F~s!&Sexp~ invs!,

~A22e!

I 65E
0

t

dŝ @DJt
(2)~s!2DJt

(1)~s!#&Sg~s!exp~ invs!,

~A22f!

I 75E
0

t

dŝ @Df t
(2)~s!2Df t

(1)~s!#&Sg~s!exp~ invs!.

~A22g!

Integrals I 2 to I 7 are in common with ^DJt
(3)(t)&S

and^Df t
(3)(t)&S while I 1 occurs in the latter only. The inte

grands containingF(•) alone or in a product withg(•), on
averaging give zero by virtue of Eq.~2.10!. And the inte-
grands containingg(•) alone or twog’s in product, amount
to negligible contributions~see Appendix B!. The integrands
containing the correlation average of twoF ’s and not obey-
ing ~or cannot be recast! the form of Eq.~A16! have all been
shown to be negligible by CN in their Appendix C@10#. Such
integrals as stated above constitute the bodies ofI 1 to I 3.
For I 4 through I 7, some integrals contain product of thre
terms, viz., ^F(•)F(•)F(•)&S, ^F(•)&Sg(•)g(•),
^F(•)F(•)&Sg(•), g(•)g(•)g(•), etc. The first two
type of integrals vanish, the former due to Eq.~2.10!
and the latter due to the Gaussian property ofF. The
last two types vanish, the latter following from
Appendix B and the former has been shown to
negligible in Appendix C. The only nonzero contributio
comes from I 5, the integral as a whole appears
v8( l 52`

` s lexp(ilf)*0
tds*0

sds1*0
s1ds2C(s2s2)exp(invs1ilvs2),
05110
ld

e

-

e

where we have used Eq.~3.5b!. Using the result of Eq.~A16!
followed by a little bit of algebra we eventually arrive at th
value of I 5. Thus,

I 552
i tv8

n
s2n exp~2 inf!

dC̃2n~v!

dv
~A23!

and

I 15I 25I 35I 45I 65I 750. ~A24!

Thus we have

^DJt
(3)~t!&S5^DJt

(2)~t!&S1 (
n52`

`

insn exp~ inf!@ I 5#,

~A25!

in which, by changing the dummy index from2n to n for
this symmetric summation (2` to 1`), and employing
Eqs.~3.12!, ~3.30!, and~3.46g! and finally putting the value
of ^DJt

(2)(t)&S from Eq. ~A18! we reach at

^DJt
(3)~t!&S522t (

n51

`

n2Fvuxnu2b̃n
c~v!

2
d

dJ
$uxnu2C̃n

c~v!%G . ~A26!

Similar calculations establish the result

^Df t
(3)~t!&S5vt1t (

n51

`

nFvb̃n
s duxnu2

dJ
2

d

dJ S C̃n
s duxnu2

dJ D G
2t f 08m0tc . ~A27!

For the calculations of the second moments^(DJt)
2&S ,

^(Df t)
2&S , and ^DJtDf t&S we refer the reader to the Ap

pendixes B and C of Ref.@10#, where it has been clearly
shown that terms that do not appear inDJt

(1)(t) and
Df t

(1)(t) lead to cross terms or square terms contain
three or more integrals over one or twoC functions. All of
them contain higher powers oft or terms of order

@C̃(v)/v#N with N>1, and are hence discarded. Thus w
obtain the second moments as

^~DJt!
2&S54t (

n51

`

n2uxnu2C̃n
c~v!, ~A28!

^DJtDf t&S50, ~A29!

^~Df t!
2&S54t (

n51

` Udxn

dJ U
2

C̃n
c~v!. ~A30!

In obtaining the results of Eqs.~A28! to ~A30! we have used
Eqs.~A10a! to ~A10c! and the like, along with the fact tha
higher-order termstn and @C̃(v)/v#n ~with n.1) are neg-
ligibly small.
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APPENDIX B: EVALUATION OF INTEGRALS INVOLVING
QUANTUM CORRECTIONS

Here we calculate the terms involving single or multip
integrals of the quantum fluctuationg(•), keeping in mind
the time scale of energy diffusion. First of all we recall t
structure ofg(t) from Eq. ~3.1f! and then refer to Eq.~A6!.
On the right hand side of that equation we have an exp
sion of the form,(n52`

` snexp(inf)*0
tdsg(s)exp(invs). For

brevity, we set

1

~n21!!m!

]m

]tm
@Vn~x~ t !!$^dX̂(n21)~ t !&

2^dX̂(n21)~0!&%# t505Ymn~0!, ~B1!

so that Eq.~3.1f! appears as

g~ t !52 (
m50

`

(
n53

`

tmYmn~0!, ~B2!

and we can write

(
n52`

`

sn exp~ inf!E
0

t

dsg~s!exp~ invs!

5 (
n52`

`

(
l 53

`

sn exp~ inf!

3F( k50`Ykl~0!E
0

t

dssk exp~ invs!G .
~B3!

From Eq.~B1! it is obvious that

Y0n~0!50, ~B4!

and thus it follows that the right hand side of Eq.~B3! as-
sumes the form

(
n52`

`

(
l 53

`

sn exp~ inf!(
k51

`

Y kl~0!E
0

t

dssk exp~ invs!,
05110
s-

where the summation over the indexk now extends from 1 to
infinity. Within the integral the exponential part fluctuate
rapidly (v being very large!, remaining finite in the limits
→0. As it stands even fork52 such integrals yield terms o
order tp ~where p.1) @10#. Thus, integrals of the abov
form are negligibly small and are hence discarded. The c
of k51 calls for a special attention. The above express
takes a more simple form. Thus,

(
n52`

`

(
l 53

`

sn exp~ inf!(
k51

`

Ykl~0!E
0

t

dssk exp~ invs!

. (
n52`

`

(
l 53

`

sn exp~ inf!Y1l~0!E
0

t

dssexp~ invs!.

~B5!

In comparison to the rapidly varying exponential part, t
linear part arising from the quantum fluctuation does n
alter significantly within the range of integration and hen
the right hand side of Eq.~B5! can be written as

(
n52`

`

(
l 53

`

sn exp~ inf!Y1l~0!tctdn,0

5 (
n52`

`

(
l 53

`

~ inxn!exp~ inf!Y1l~0!tctdn,0

@using Eq.~3.30!#

50. ~B6!

Here tc is the cutoff time (.1/v) as has been mentione
earlier in the discussions preceding Eq.~3.48!. Similarly, af-
ter averaging the last term of Eq.~A5! becomes

(
n52`

`

(
l 53

`

mn exp~ inf!Y1l~0!tctdn,052m0tct f 08 ,

~B7!

where we have used Eq.~3.31! and Eq.~3.46e!.
Now consider the last integral of the right hand side

Eq. ~A15!. It is of the form *0
tds*0

sds1g(s)g(s1)exp(invs
1ilvs1). Using Eq.~B2!, it can be cast in the following form
E
0

t

dsE
0

s

ds1g~s!g~s1!exp~ invs1 i l vs1!

5E
0

t

dsg~s!exp~ invs!E
0

s

ds1g~s1!exp~ i l vs1!

5E
0

t

dsF2 (
m50

`

(
k53

`

smYmk~0!Gexp~ invs!E
0

s

ds1F2 (
m150

`

(
k153

`

s1
m1Ym1k1

~0!Gexp~ i l vs1!

5 (
m51

`

(
k53

`

(
m151

`

(
k153

`

Y1k~0!Y1k1
~0!E

0

t

dssm exp~ invs!E
0

s

ds1s1
m1 exp~ i l vs1!

. (
k53

`

(
k153

`

Y1k~0!Y1k1
~0!E

0

t

dssexp~ invs!E
0

s

ds1s1 exp~ i l vs1! @using Eq.~B5!#

. (
k53

`

(
k153

`

Y1k~0!Y1k1
~0!E

0

t

dssexp~ invs!Fs exp~ i l vs!

i l v G , ~B8!
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where evaluating the third bracket of the last expression
have neglected terms of orderO(1/v2). The last expression
yields terms of negligible contribution due to the reaso
given at the onset of Eq.~B5!. Integrals involving threeg
functions can be similarly shown to be negligibly small.

APPENDIX C: TREATMENT OF INTEGRANDS
OF I 4 TO I 7 OF APPENDIX A

In the discussions that appeared in between Eq.~A22g!
and Eq.~A23! we mentioned of four types of integrands th
appear in the calculations involving the evaluations of
integralsI 4 to I 7 @Eqs. ~A22d!–~A22g!#. Let us recall their
forms again. They are

~1! ^F~• !F~• !F~• !&S , ~2! ^F~• !&Sg~• !g~• !,

~3! ^F~• !F~• !&Sg~• !, ~4!g~• !g~• !g~• !.

It was reasoned there that types~1!, ~2!, and~4! yield terms
of negligible contributions~see Appendix B!. Here we clarify
the way of dealing with type~3!. The specific forms of inte-
grals involving this type of integrands are

~A! E
0

t

dsE
0

s

ds1E
0

s1
ds2^F~s!F~s1!&Sg~s2!

3exp@ iv~ js1ns11 ls2!#,

~B! E
0

t

dsE
0

s

ds1E
0

s1
ds2^F~s!F~s2!&Sg~s1!

3exp@ iv~ js1ns11 ls2!#.

These two integrals occur inI 4,

~C! E
0

t

dsE
0

s

ds1E
0

s1
ds2^F~s!F~s2!&Sg~s2!

3exp@ iv~ js1ns11 ls2!#.

This, with type~A! above, occur inI 5. And lastly the integral
e

m

is-

05110
e

s

e

~D!E
0

t

dsE
0

s

ds1E
0

s1
ds2^F~s1!F~s2!&Sg~s!

3exp@ iv~ js1ns11 ls2!#

occurs inI 6 and I 7.
All the integrals from~A! to ~D! lead to negligible con-

tributions. We establish this by showing the case of, say, t
~B!. For doing this we invoke the quantum fluctuatio
dissipation relation from Eq.~3.5b! as

^F~s!F~s2!&S5
1

2E0

`

dv8k~v8!r~v8!\v8Fcoth
\v8

2kBTG
3cosv8~s2s2!

5E
0

`

dv8G~v8!cosv8~s2s2!

with

G~v8!5
1

2
k~v8!r~v8!\v8Fcoth

\v8

2kBTG ,
where, a superscript prime has been added tov to denote the
frequency of the bath modes,

^F~s!F~s2!&S5
1

2E0

`

dv8G~v8!@exp$ iv8~s2s2!%

1exp$2 iv8~s2s2!%#. ~C1!

When Eq.~C1! is put in type ~B! integral along with Eq.
~B2!, we get the value of the integral as

@ type B#5 f 08E
0

`

dv8G~v8!F 2v8

n2v22v82G tctd j 1 l ,2n .

~C2!

This being of higher order in 1/v, can be discarded. It is eas
to show that the other three types of integrals also lead
negligible contributions. The procedure is the same as
adopted above in the case of type~B!.
,
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@38# V.I. Mel’nikov, Zh. Éksp. Teor. Fiz.87, 663~1984! @Sov. Phys.
05110
,

s.

s.

.

E

JETP60, 380 ~1984!#; Physica A130, 606 ~1985!.
@39# A.I. Larkin and Yu.N. Ovchinnikov, J. Stat. Phys.41, 425

~1985!.
@40# I. Rips and J. Jortner, Phys. Rev. B34, 233 ~1986!.
@41# K.S. Chow and V. Ambegaokar, Phys. Rev. B38, 11 168

~1988!.
@42# H. Dekker, Phys. Rev. A38, 6351 ~1988!; H. Dekker and A.

Maassen van den Brink, Phys. Rev. E49, 2559~1994!.
@43# U. Griff, H. Grabert, P. Ha¨nggi, and P.S. Riseborough, Phy

Rev. B40, 7295~1989!.
@44# W.H. Louisell, Quantum Statistical Properties of Radiatio

~Wiley, New York, 1973!.
@45# S.K. Banik, B.C. Bag, and D.S. Ray, Phys. Rev. E65, 051106

~2002!.
@46# H. Risken and K. Vogel, inFar From Equilibrium Phase Tran-

sition, edited by L. Garrido, Lecture Notes in Physics Vol. 31
~Springer-Verlag, Berlin, 1988!.

@47# M. Lax, Rev. Mod. Phys.38, 541 ~1966!.
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